量子物理的前景,学哪一分支有实际应用

  • 时间:
  • 浏览:0

大家好,我是小编,今天我要和大家分享一下关于量子物理的前景,学哪一分支有实际应用的问题。为了让大家更容易理解,我将这个问题进行了归纳整理,现在就一起来看看吧。

文章目录列表:

量子物理的前景,学哪一分支有实际应用

总的来说,量子计算的好处有3点。

1. 量子计算的计算能力要比经典计算要强。但是至于强多少,现在没有严格的证明,这一点我已经说了很多次了。2^N只是人们构想的。量子计算可以到达的计算空间是post-BQP,至于这个post-BQP到底有多大,没有人知道。

2. 量子计算机的速度要快。我们只是已知所有的经典计算都可以有效的变成量子计算。至于量子计算能快多少,我们也不知道。是不是有量子算法可以有效的解决NP-Hard,甚至有效的解决P-space,甚至更快。这些都还有待研究。

3. 量子计算节能。由于量子计算都是unitary operator(幺正),是可逆的计算。也就是说只有在一次量子计算结束时(测量量子态时)才会出现熵增。这个也是量子计算在物理意义上的优势。经典计算永远不可能有这个优势。

那么,量子计算现在有什么应用呢。现在几乎没有。原因是现在通用性的量子计算实现上还有很多的困难。就现在来看只有D-wave一家公司有商业化的量子计算机。只是现在只能计算的Ising model的ground state出来(但,不要小瞧这个,这个也是NP-Hard问题了)。尽管,现在D-wave好像没有多大用处,但是可以证明D-wave用的量子算法也是通用的,也就是说D-wave有一天可能会改造成通用的量子计算机出来。

说到了硬件实现上了,我就引用自己在知乎的回答量子计算机的工作原理如何简单解释? - huang莱因哈特的回答。这里有更加详细的关于量子计算机硬件及其实现的方法的讨论,这里不重复了。

那么,假设一天通用型的量子计算做出来了。首先可以知道的是,所有银行里,政府中,甚至是军队中用的RSA密码的破译将得到有效的解决(shor algorithm)。这不亚于原 对 格局的影响。还有很多算法的加速可以改变 ,这里就不一一列举,有兴趣的同学可以看看http://math.nist.gov/quantum/zoo/,这里列举一些已知的量子算法加速经典算法的例子。

当然了,量子计算做出来了,那么量子通信的元器件也能做出来了。当然这属于量子通信改变 的部分了。

再说一个有趣的,前面没有人提到的方向吧。最近有些论文有提出黑洞会喷射出信息(详见霍金辐射),但是这些信息的复杂度可能只能用量子计算来破译出来。也就是说,掌握了量子计算的人类可以破译更多宇宙中有效的信息。(当然这些只是猜想)

一、生物计算机。

优点:

1、体积小,功效高。

生物计算机的面积上可容纳数亿个电路,比目前的电子计算机提高了上百倍。同时,生物计算机,已经不再具有计算机的形状,可以隐藏在桌角、墙壁或地板等地方,同时发热和电磁干扰都大大降低。

2、生物计算机的芯片 性与可靠性。

生物计算机具有 性和很高的可靠性。若能使生物本身的修复机制得到发挥,则即使芯片出了故障也能自我修复。

(这是生物计算机极其诱人的潜在优势)蛋白质分子可以自我组合,能够新生出微型电路,具有活性,因此生物计算机拥有生物特性。

生物计算机不再像电子计算机那样,芯片损坏后无法自动修复,生物计算机能够发挥生物调节机能,自动修复受损芯片。

3、生物计算机的存储与并行处理。

生物计算机在存储方面与传统电子学计算机相比具有巨大优势。一克DNA存储信息量可与一万亿张CD相当,存储密度是通常使用磁盘存储器的1000亿到10000亿倍。

生物计算机还具有超强的并行处理能力,通过一个狭小区域的生物化学反应可以实现逻辑运算,数百亿个DNA分子构成大批DNA计算机并行操作。

4、发热与信号干扰。

生物计算机的元件是由有机分子组成的生物化学元件,它们是利用化学反应工作的,所以;只需要很少的能量就可以工作了。

因此,不会像电子计算机那样,工作一段时间后,机体会发热,而生物计算机的电路间也没有信号干扰。

5、数据错误率。

DNA链的另一个重要性质是双螺旋结构,A碱基与T碱基、C碱基与G碱基形成碱基对。每个DNA序列有一个互补序列。这种互补性是生物计算机具备 优势。

如果错误发生在DNA某一双螺旋序列中,修改酶能够参考互补序列对错误进行修复。

缺点:

1、生物计算机从中提取信息困难。一种生物计算机24小时就完成了人类迄今全部的计算量,但从中提取一个信息却花费了1周。这也是目前生物计算机没有普及的最主要原因。

二、量子计算机。

优点:

1、量子计算机拥有强大的量子信息处理能力,对于目前多变的信息,能够从中提取有效的信息进行加工处理使之成为新的有用的信息。

运用这种方式能准确预测天气状况,目前计算机预测的天气状况的准确率达75%,但是运用量子计算机进行预测,准确率能进一步上升,更加方便人们的出行。

2、量子计算机由于具有不可克隆的量子原理这些问题不会存在,在用户使用量子计算机时能够放心地上网,不用害怕个人信息泄露。

3、量子计算机拥有强大的计算能力,能够同时分析大量不同的数据,所以在金融方面能够准确分析金融走势,在避免金融危机方面起到很大的作用;

4、在生物化学的研究方面也能够发挥很大的作用,可以模拟新的药物的成分,更加 地研制药物和化学用品,这样就能够保证药物的成本和药物的药性。

缺点:

1、量子消相干。

量子计算的相干性是量子并行运算的精髓,但在实际情况下,量子比特会受到外界环境的作用与影响,从而产生量子纠缠。

量子相干性极易受到量子纠缠的干扰,导致量子相干性降低,也就是所谓的消相干现象。

2、量子纠缠。

量子作为最小的颗粒,遵守量子纠缠规律。即使在空间上,量子之间可能是分开的,但是量子间的相互影响是无法避免的。

3、量子并行计算。

量子计算机 的并行计算是经典计算机无法比拟的重要的一点。同样是一个n位的存储器,经典计算机存储的结果只有一个。

4、量子不可克隆。

量子不可克隆性,是指任何未知的量子态不存在复制的过程,既然要保持量子态不变,则不存在量子的测量,也就无法实现复制。对于量子计算机来说,无法实现经典计算机的纠错应用以及复制功能。

百度百科-生物计算机

百度百科-量子计算机

今天的讨论已经涵盖了“量子物理的前景,学哪一分支有实际应用”的各个方面。我希望您能够从中获得所需的信息,并利用这些知识在将来的学习和生活中取得更好的成果。如果您有任何问题或需要进一步的讨论,请随时告诉我。