AI如何准确揭示公司真实盈利能力?超越传统股票分析师的研究发现
- 时间:
- 浏览:0
对于人工智能可以用来炒股吗的问题,我有一些了解和研究,也可以向您推荐一些专业资料和研究成果。希望这对您有所帮助。
文章目录列表:
人工智能可以用来炒股吗
说的神乎其神,人工智能能用来炒股吗?
人工智能在围棋、象棋、德扑等领域都已经取得了碾压式胜利,这已经是一个不争的事实。事实上AlphaGo这样的AI已经可以用于任何需要理解复杂模式、进行长期计划、并制定决策的领域。人们不禁想问,还有什么是人工智能不能克服的吗?譬如说,变幻莫测的A股?
对于这个问题,持各种观点的都不乏其人。探讨它实可以分为两个部分:1. 股市可以预测吗? 2、 假如可以预测,用机器学习的方法去预测可以吗?
先回答 个问题:股市的涨跌可以预测吗?
如果将股市的价格变化看做一个随时间变化的序列,Price=Market (t), 我们往往会发现,不管是尝试用N个模型(线性,非线性, 概率)来进行逼近,即使是建立了符合股价变化的这样的模型,并且在有足够多的训练数据的情况下模拟出了股价,但是这些模型最多只能在特定的区间能做一些并不十分 的预测。
首先是ReinforcementLearning, 这个算法基于马尔可夫性,从一个状态预测下一个状态,但是股价的涨跌具有强烈的马尔可夫性吗?也就是上一时刻的股价与下一个时刻的股价间有必然的联系吗?应该是不太大。这种基于N阶马尔可夫性的系统对于股价的分析很不利。而且假如只使用股价的历史数据进行模型的训练的话,准确度可以说几乎为0。
事实上影响股价的因素不仅仅是历史股价,还有更多的因素,公司的近况,股民对股票的态度,政策的影响等等。所以许多人从这方面进行入手,用人工智能提供的快速计算能力,使用合适的模型,来量化这些因素,例如, (政策X出台, 可能会对股价造成变化y元)。当你的模型将所有的因素全都考虑进来, 那么股价的预测就唾手可得了。股价=f(政策因素, 公司情况,市场因素, 历史股价,上一年历史股价, 某个股民 的影响...)
然而这些因素到底有多少? 它们之间会如何影响,这才是问题的关键。在某些稳定的情况下,我们是可以做大概的预测的,但是有很多时候会不准确,这是因为,你的模型很难把所有的 因素都考虑进来。而且因素与因素间还会产生互相影响的情况下。股价的模型将会变得极其复杂。如下图:
一个因素与一个因素之间的互相影响是很可能被预测出来的,但是假如它们之间产生了相互的影响,这时候整个系统就变得几乎不可预测了。一个因素发生变化,会造成好几个因素的变化,最后这几个因素又会反作用回来使上一个因素直接或间接的发生变化,股价变化一下子就变得难以捉摸起来。一些微小的因素也可以通过这种系统无限的放大,最后给股市造成巨大的影响。
那么是不是预测股价是就是不可能的呢?
事实上人工智能远比我们想象的更强大。例如非常繁复的Bayesian reasoning,包括deep learning/deepreinforcement learning,它们都能表示复杂的hidden ariables之间的关系。现在国内外也已经有许多公司在探索将人工智能应用于股市的可能性了。
但是这里所说的将人工智能技术应用于股市,大部分不是说让人工智能代替人去做决策,而是利用人工智能在数据处理和不受主观喜好影响上的优势,在投资决策中扮演一个“AI 顾问系统”的角色,去辅助人类做出更明智的决策。
股市分析包括基本面分析与技术分析两大块,而人工智能技术在这两方面都能发挥作用:
1
基本面分析
简言之,就是读取各类财经资讯。面对网上海量又纷繁复杂的信息,只依靠人脑已经无法解决问题了。我们知道数据挖掘的三个V,(Volume数据大),(Velocity更新快),(Variety多样),在处理这样的海量数据时,计算机相比人脑具有不可比拟的优势。而深度学习在自然语言处理领域的应用,可以做到在海量的信息中做出自动摘要,提取出精华信息以帮助人类进行决策。
另外,股票价格在很大程度上是由买卖双方的力量对比决定的,是由每个股民对某支股票的情绪而决定的。如果大家都很看好一支股票,那么它就很可能会涨;反之会跌。还有一些特定事件会很明显地影响到股票价格,例如今年美国40年来 开放原油出口后,国内能源版块不出意料下跌了。这也是为什么这么多股民会刷新闻,看动态来保持敏锐的嗅觉。可以看出,在预测股票这件事上,最重要的是信息,或者说是数据,从中挖掘股民的情绪。而情绪识别已经是人工智能所擅长的技术了。国外已经有很多这方面的研究,也有DataMinr这样的公司专注从社交媒体中提取有价值的金融信号。
如下图,美联社官推被黑(谣言奥巴马被袭击受伤),很快股市出现了大幅度下滑-上升(看13点左右)。虽然这个事件较为特殊,但是设想如果能够在 时间得到类似消息,实际上就掌握了预测股市的主动权。
可以大胆想象,如果将情感分析与机器学习相结合,抓来海量的数据,去做情感分析,大概找出民众对于对某些股票持乐观还是悲观的情绪,那么至少可以将这一因素纳入模型学习范围中。现存的很多论文都是在情感分析上找寻很多办法去提高准确率。其他一些更简单的做法还有:(1)Google Trend。这个是很简单的办法:谷歌提供的搜索量数据,利用搜索量的变化来预测。(2)利用Twitter olume(相关Twitter的发帖数量)
2. 技术分析
传统技术分析中的K线分析,什么“大阳星”、“小阴星”、“旭日东升”、“穿头破脚”,其实就是人脑的模式识别。受人脑信息处理能力的限制,这些识别出来的模式有以下缺点:(1)只是单条K线的、只是基于一个模糊的形状,似是而非的、没有确切的数字标准的;(2)基于有限的历史信息的。 而好的深度学习策略,可以突破人脑的限制,比如突破单一K线的限制,从更多的财经信号(其他股票、黄金、外汇等)中寻找规律;或是从一个更长时间段的历史信息中识别出规律。
总之,人工智能将提升我们处理信息的深度、广度。使用基于人工智能技术的“智能投顾”的人,将比不运用或是还在利用“人脑”进行基本面分析与技术分析的人占信息优势,从而也就更可能在股市中盈利。
人工智能在证券投资领域的兴起始于2007年。彼时, 个纯人工智能的投资基金在美国纽约诞生,此后人工智能在证券投研领域的发展步入快车道; 事实上,在证券投资领域,人工智能早已经不是什么新鲜事,量化对冲基金经理遍布于北京金融街、上海陆家嘴。一般来说,公募基金或大型私募的量化投资部由两部分组成,一部分是投研团队,另一部分是IT团队,投研团队提出需求,IT团队做出算法交易的模块,解决基金经理们的需求。
“正常情况下,我每天的工作流程是早上起床后看一下(机器)生成的股票清单,再看看组合管理系统里每个策略配了多少权重,这些策略加起来的仓位又是多少,然后根据机器所给出的信号(卖出或买入)的各类数据(包括融资融券、投资者入场情况等),判断机器给出的信号有没有明显的错误。”一位量化对冲经理说,如果当天需要交易,他就会生成交易指令,再下单到交易系统,交易系统就会开始自动运作。
在传统的投研中,基金经理及研究员们对财务、交易、市场等数据进行建模,分析其显著特征,利用回归分析等传统机器学习算法作出交易策略,到了人工智能阶段,这些工作便交给了计算机。目前,一些私募基金已开始将量化对冲的三个子领域融入日常交易策略中,尝试获取收益,它们包括机器学习、自然语言处理与知识图谱。例如,作为全球最大的对冲基金,桥水联合(Bridgewater Asspcoates)使用的是一种基于历史数据与统计概率的交易算法,让系统能够自主学习市场变化并适应新的信息。
AlphaGo大胜李世石柯洁,引发全 关注。投射到投研领域,则是以人工智能量化选股和人类基金经理之间的对决。已经证明的是,人工智能选股在规避市场波动下的非理性选择、回避非系统性风险、获取确定性收益方面等更胜一筹,波动率、最大回撤等指标也更低,表现更稳定。
然而,机器虽然动作比人快,但思维还是没人快。比如面对某个新出台的政策、市场热点,基金经理可以立即以此为主线采取行动。但是机器没那么快。这是人的优势。再譬如,机器一次只能做到一个阶段做一个策略,比如供给侧改革,只能想到煤炭、钢铁、有色金属里的股票,但是对基金经理,他就还能同时做价值投资或动量反转等策略。
整体来说,将整个股票投资决策过程全部交给机器,目前来说还属于少部分金融巨头企业才能做到的事情。
美国硅谷“感知力”技术公司让人工智能程序全程负责股票交易,与其他一些运用人工智能的投资公司不同,该公司交易部门只有两名员工负责监控机器,以确保出现不可控情形时可通过关机终止交易。据报道,“感知力”公司的人工智能投资系统可以通过经验学习实现“自主进化”。公司在全球拥有数千台同时运行的机器,其 算法创造了数万亿被称为“基因”的虚拟交易者。系统利用历史数据模拟交易,目前可在几分钟内模拟1800天的交易量,经过测试,不好的“基因”被剔除,好的“基因”被保留。通过考验的好“基因”被用于真正的交易。公司员工只需设定好时间、回报率、风险指数等交易指标,剩下的一切都交由机器负责。
公司首席投资官杰夫·霍尔曼透露,目前机器在没有人为干预情况下掌握着大量股票,每天完成数以百计的交易,持仓期限为数日到几周。公司说机器的表现已超越他们设定的内部指标,但没有透露指标的具体内容。
随着人工智能技术的持续进步,人工智能投资成为被学术界和资本看好的领域。英国布里斯托尔大学教授克里斯蒂亚尼尼说,股票投资是十大最有可能被人工智能改变的行业之一。另一方面,也不是所有的投资商都信任机器,英国对冲基金曼氏金融首席科学家莱德福警告说,不应过度信任人工智能投资,该领域还远没有成熟。虽然有各种各样具有迷惑性的承诺,很多投资人的钱却有去无回。
参考消息网12月8日报道?港媒称,中国近年着力发展人工智能(AI),已成为AI大国,无论在人才数量、企业数量均在全球均占第二位,唯美国在各领域均大幅 中国。值得注意的是,在有研究AI的高等院校中,美国占了45.7%,中国要追赶美国,一定要加紧在高等院校中开始培养人才。
据《香港经济日报》网站12月7日报道,《财富》全球论坛昨在广州开幕,今年论坛以“开放与创新 构建经济新格局”为主题。中央近年推动科技创新,以带动经济转型,人工智能是关键一环。中国 科技近年也投放大量资源在AI领域上,目前已见到成绩。
报道称,发展AI产业最重人才,《全球人工智能人才白皮书》显示,全球AI领域人才总数约30万,而目前市场的需求则在百万量级,AI人才供应存在很大缺口。
截至2017年6月,全球人工智能初创企业共计2617家。美国占据1078家居首,亦即美国企业占全球总数逾40%,中国以592家企业排名第二,其后分别是英国,以色列,加拿大等 。其中,美国1078家人工智能初创企业约有78700名员工,中国592家公司中约有39200位员工。
具体来看,全球30万AI人才中,高校领域约有10万人,产业界约20万人。目前,全球共有367所具有AI研究方向的高校,但每年AI相关领域的硕博毕业生只有约2万名。在这367所高校中,美国拥有168所,占据全球的45.7%,反观中国只有20所。
报道称,中美两国AI人才聚集的产业并不相同。在美国,投资者对于基础层面更为看重,而中国投资者对应用层的关注更多。
事实上,近年中国在AI领域发展的确在全球前列,成绩比不少发达 更佳,但相比于美国,基础仍相对薄弱,要追赶美国仍有一大段距离。特别是美国高等院校研究AI占了全球近半壁江山,每年有大量人才补充,这点是包括中国在内的其他 难以冀及。
报道称,更值得注意的是,美国投资者及企业,更注重基础技术研究,这些成果未必能即时商业化,但对未来科技的影响深远;而中国投资者更着重应用,这在起步之初无可厚非,但切忌急功近利。
资料:12月2日,第四届 互联网大会·互联网之光博览会在浙江省桐乡市乌镇拉开帷幕,这是参观者在博览会上了解智能悬浮 。
延伸阅读美媒宣称美国用人工智能分析卫星照片 搜寻他国导弹发射场
参考消息网11月26日报道?美媒称,在情报机构中,只有为数不多受过训练的分析人员从事从浩如烟海的卫星图像中寻找未公开宣布的核设施或秘密军事场所的工作。但是,使谷歌和脸书公司的人脸和喵星人的自动过滤成为可能的那种深度学习人工智能,在针锋相对的间谍 中也可能被证明是无价之宝。一个早期的例子是:美国研究人员已经训练了发现中国地对空导弹发射场的深度学习算法,其速度要比人工分析快数百倍。
据美国连线杂志网站11月21日报道,深度学习算法被证明能够帮助先前不具备图像分析经验的人员,找到散布在中国东南地区近9万平方公里区域内的地对空导弹发射场。这种基于神经网络——即能够对海量数据进行过滤并从中学习的层状人造神经元——的人工智能可媲美人类图像分析 在定位导弹发射场时取得的90%的总体准确率。也许更加令人叹为观止的是,深度学习软件帮助人类把找出潜在导弹发射场的时间从60个小时缩短至仅42分钟。
密苏里大学地理空间智能中心主任、电机工程和计算机科学教授柯特·戴维斯说:“算法被用来寻找据说被高度怀疑存在导弹发射场的位置,然后由人工对搜索结果进行评估以确保准确,并弄清算法节约了多少时间。”
报道称,密苏里大学的这项研究于10月6日发表在《应用遥感杂志》上。该研究是在卫星成像分析人员正在被大数据的洪流淹没的背景下展开的。 商业卫星成像公司DigitalGlobe每天生成大约70兆兆字节的原始卫星成像数据,更不用说来自其他商业卫星和政府间谍卫星的所有成像数据了。
戴维斯和同事们证明了现有的深度学习模型——它们经过了针对卫星成像分析的培训和改进——能够如何发现让情报机构和 安全 产生极大兴趣的潜在目标。这些深度学习模型——包括GoogleNet和微软研究公司的ResNet——最初建立时的目的是从传统照片和视 信息中发现目标并进行分类。戴维斯和同事们对这些模型进行了调整以使它们适应解读卫星成像数据的难题和局限,例如培训一些能够解读彩色和黑白图像的深度学习模型,以备在只能获得地对空导弹发射基地的黑白图像时使用。
事实上,分析人员广泛依赖于卫星成像技术对朝鲜武器计划的发展进行跟踪。人类分析员很可能已经发现了这个幅员相当狭小的 境内现有的大部分、甚至全部的地对空弹发射场。但是类似的深度学习工具可以帮助自动标记在朝鲜或其他 境内出现的新的地对空发射场。对已有和新的导弹发射场的了解有时可以引导分析人员发现其他可疑地点,因为各国通常把地对空导弹发射场设置在特定区域以防其附近的宝贵装备遭到空中打击。
报道称,研究人员最终只利用了大约90个得到肯定确认的中国导弹发射基地样本来训练人工智能。规模如此小的培训数据集在正常情况下或许无法取得准确的深度学习成果。为了绕过这一问题,戴维斯和同事们通过在不同方向上对原始图像稍作改变,把这90多个培训样本转化成了89.3万个培训样本。
报道称,这项研究令人印象深刻的深度学习成绩很可能得益于地对空导弹发射场的规模相当庞大,并且从卫星的俯拍照片上呈现 的形状。戴维斯提醒说,在试图分析较小的目标如车载导弹发射器、雷达天线、车载雷达系统和军车等的时候,深度学习算法将面临大得多的挑战,因为现有卫星图像在提取识别特征时没有那么多的像素可以使用。
资料:这张拍摄于2012年12月2日的卫星图像显示的是朝鲜丰溪里核试验场地区的交通线路图。(卫星图像由DigitalGlobe公司拍摄、约翰·霍普金斯大学高级国际研究学院美韩研究所下属网站“38 North”添加注解并于2012年12月28日发表。)
延伸阅读外媒称中国人工智能5年内比肩美国:解放军将凭此获得优势
参考消息网11月29日报道?外媒称,美国情报界的一个研究机构近日举行了一场竞赛,看谁开发出的人脸识别技术最 。在所有参赛者中,荣获2.5万美元最高奖的是一家名叫依图科技的中国初创公司。
路透社11月28日报道称,美国一家智库的报告举出类似的众多例子证明,中国军方也许会利用该国在人工智能领域的快速进步,推动武装力量现代化并有可能谋求对美军事优势。
由新美国安全中心的埃尔莎·卡尼亚撰写的这份报告称:“中国不再处于相对于美国的技术劣势,而是已经成为真正的对手,在人工智能方面也许会有能力超越美国。”
卡尼亚写道,未来美中两国在人工智能领域的竞争“可能会改变未来的经济和军事力量对比”。
“字母表”公司的执行董事长埃里克·施密特前不久在华盛顿的一次聚会上就中国的潜力发出了类似警告。他指出,中国7月份公布的《新一代人工智能发展规划》要求在未来几年赶上美国,并最终成为全球 的人工智能创新中心。
施密特在这次会议上说:“我认为我们在今后5年里仍会处于 地位,但中国的赶超速度会非常快。所以,5年后我们可能就会差不多处于同一水平。”
今年早些时候,五角大楼的一份未公开文件渲染说,中国企业正在通过购买美国公司的股权来绕开美国的监管,获取有潜在军事用途的美国人工智能敏感技术。
针对这种情况,一些美国国会议员本月提出了加强美国外资管理的议案。新美国安全中心的报告指出了中国的收购活动,并表示北京在培育国内人工智能产业与美国竞争方面有一些障碍,包括招聘顶尖人才。
然而,施密特说:“如果你们认为他们的制度和教育体系培养不出我所说的那种人,那你们就错了。”
人工智能技术促进了自动驾驶汽车的出现,可能会彻底改变交通运输的面貌。此外,这种技术还给医学带来重大进展。据估计,它也有能改变战场形势的军事用途。
五角大楼有一个项目,着眼于让计算机帮助筛选无人机拍摄的影像资料,从而减少人类分析师的工作量。这其中已经运用了一些机器学习技术。
报道称,报告引述公开文件的内容指出,中国人民解放军正投资于各种和人工智能有关的项目,解放军的研究机构正与中国国防工业合作。报告称:“解放军预计人工智能的出现会从根本上改变战争的性质。”
卡尼亚承认,鉴于人工智能的发展尚处于早期,且中国及其他 有关人工智能的政策尚不完善,她的这一研究结果相当大一部分是推测性的。尽管如此,她在报告中表示,一些解放军思想家预计战场上即将出现“奇特景象”,届时人类在作战过程中会跟不上机器主导决策的速度和节奏。
资料图:青少年AI人工智能设计大赛苏州开赛。
延伸阅读美媒:第四次工业革命来临?人工智能将消灭过时岗位
参考消息网11月24日报道?美媒称,无人驾驶汽车和卡车占领公路,机器人“操作”工厂。超级智能手机呼来优步公司直升机,将手机主人送到迅速扩大的城区。机器利用算法自学完成一度需要人类智慧才能掌握的认知任务,消灭了无数管理及工业岗位。
据美国《华盛顿邮报》网站11月22日文章,这就是技术进步导致的第四次工业革命重塑 的愿景——多半会在未来五至十年内实现。今天,这个景象不仅在硅谷初露端倪,而且在巴黎的智库、中国的电动车工厂甚或在撒哈边沙漠周边都能看到。
21世纪,技术所带来的影响不同以往。过去,蒸汽机、电力和计算机诞生时,社会有数年时间适应技术带来的变化。今天,变化是随时随地的,瞬间就以数字化形式遍布全球。
各地各级政府突然认识到社交媒体、其他形式的算法以及人工智能已迅速超出了其掌控范围,甚至令其毫无察觉。
文章称,美国人今天的生活受技术影响的范围要远比过去几十年更为广泛。自动驾驶汽车、云(技术)以及送货上门的成群结队的无人机都是众所周知的概念了。但是,这些技术步步紧盯你我,这个现实的确令人措手不及。
本月,法国国际关系研究所在摩洛哥召开 政策年会期间,一位发言者说:“中国不仅是全球工厂,而且正在成为全球实验室。”他指的是北京迅速发展的 和民用人工智能技术。
文章称,美国政府置身事外,任凭市场力量发展具有全球影响的技术公司巨头。中国则选择了正面竞争。欧洲允许美国技术公司进入市场,对其加以管理而不是与其竞争。俄罗斯则把信息技术武器化,为军队、导弹和坦克增添社交媒体。
外交官和战略家已经开始探讨技术与国际事务的交集,希望找到办法,将冷战式威慑和军备控制协议原则应用到网络威胁领域。
也有人呼吁,政府应当开始想办法解决技术影响对国内劳工市场和日益脆弱的政治体系造成的紧迫问题。
文章称,人工智能和自动化在消灭过时岗位的同时也在创造新的岗位,新岗位常常需要持续不断的再培训和多种职业与场所转换。美国用人单位报告目前空缺610万个就业岗位,主要是因为求职者缺乏所需要的技能或就业流动性。
人工智能机器人
延伸阅读外媒称中国在人工智能领域挑大梁:高科技非西方专属游戏
参考消息网10月30日报道?英媒称,高科技曾被认为只是美欧日等发达经济体的专属游戏,但如今中国正在颠覆这种偏见,在人工智能研发领域,中国已经令人意外地与美国共挑大梁。
据英国《金融时报》网站10月20日报道,“到2018年,中国政府对人工智能的研发支出可望达到150亿美元。”麦肯锡董事长兼全球总裁鲍达民如此预测。鲍达民是一名中国通,在成为麦肯锡 之前曾长期驻扎上海。今年9月底他空降北京,再次呼吁中国加大力度发展人工智能产业。他认为,中国在这方面蕴藏着巨大的潜力,一个最根本的原因是这里拥有海量活生生的数据。他表示,20年前全球范围内曾出现过一次“假曙光”,但是当时没有可匹配的计算能力,如今随着计算技术的提升,加之移动互联网的发展,更多数据得以采集,人工智能正在从构想变为可应用的现实。
此前麦肯锡全球研究院在一份报告中做过三点判断:人工智能投资已进入到 科技公司对 和知识产权的竞争阶段;早期进入人工智能行业的公司往往更接近数字化前沿;高科技、通信与金融服务三年内将成为人工智能的主导产业。麦肯锡预计,人工智能应用的市场规模将在八年后达到1270亿美元。在2017年3月举行的中国发展高层论坛上,鲍达民在讲演中称,一些中国的互联网企业在自然语言处理、图像和语音识别等技术方面走在了前沿,可整合进诸如私人助理、自动驾驶等新产品中。
作为执掌这家全球顶尖合伙人咨询公司近九年的 人士,鲍达民在每日与各类客户的接触过程中,训练出了非常敏锐的洞察力。一个趣闻是,现在越来越多机构开始认真对待中国2013年提出的“一带一路”倡议,其实早在2010年鲍达民就谈到可能会出现一个“新的贸易轴心”、“这是以前的一条丝绸之路”。
鲍达民对中国问题很感兴趣,也懂得如何发挥 。跟其他很多行业一样,今天的咨询业也面临着被人工智能大肆改造的命运,在高薪聘请员工与高价引进人工智能技术之间,以做决策为每日工作的鲍达民,此时更需要仔细权衡。他表示,公司要承担起“双重使命”——为满足客户需求而大力引进机器人和自动化程序,另一方面需要培训员工掌握运用人工智能必需的相关技能。
以下是鲍达民接受《高端视点》视 访谈的部分文字选编:
问:你为什么呼吁中国要加大力度发展人工智能?
鲍达民:我定期来中国的一个原因是,如果你不了解现在中国正在发生什么,你就会被边缘化。人工智能是我感兴趣的领域,因为我觉得它是会改变 的重要技术。我认为中国在人工智能领域将具有重要的地位,主要得益于这里的人才和智力资源。(中国的参与)也会促进 的发展,我们可以解决诸如医学方面的许多难题,像癌症;还有对孤独症的治疗等很多 难题,都是人工智能可以帮助解决的。另外,它还有助于提高生产力水平。因此,出于各个方面的原因,中国需要在人工智能领域扮演重要角色。
问:中美都集中发展人工智能,而中国的人口是美国的近五倍,中国仍是发展中 ,中国有什么优势吗?
鲍达民:美国在这一领域处于 地位英国则是在研究领域十分先进,比如有“深层思维”这类公司,聚集了很多神经科学家、生物学家、计算机科学家等。即便是加拿大也在努力推动人工智能的发展,像多伦多和蒙特利尔都在尽力推动相关产业。于我而言,我认为对人才和领导力的把握更重要,人工智能是重要的机遇。中国已经拥有了数据,再次强调,发展人工智能仅 技术也不行,还得有数据。你提到了中国拥有美国五倍的人口,这些数据就是发展人工智能的重要材料。
问:你非常珍惜人才,注重教育。过去的几年里,中国毕业生留给你的印象有什么变化吗?
鲍达民:中国学生的质量一直都很高,也很有才干。我记得在几个大学举行招聘的时候,我说既然这些人都有能力进入这些大学,我们为什么还要费劲去测试他们解决问题的能力?我自己有可能都考不上这些学校。所以,他们都是非常聪明的人。我想我注意到的一个变化就是,我们现在招了很多没有那么多社会经验的人,有一次我在上海招聘了两个学生,他们非常棒,我让他们在肯德基工作了两晚,但他们的父母非常沮丧。一个学生的父母问,他们被招进了麦肯锡,为什么要在快餐连锁店工作?我说,因为你需要看看那些不冲厕所的人、偷东西的人,还有毫不讲理的顾客,这就是生活。如果一直仅身处学术环境中,你没有办法适应那些做奇怪事情的人。我发现如今更多毕业生拥有此类真实的社会经验,这非常重要,否则你会没办法与人打交道。
鲍达民。
延伸阅读美媒文章:下一场科技竞赛将聚焦人工智能
参考消息网11月9日报道?美国《外交政策》双月刊网站11月3日刊发美国布鲁金斯学会主席、前驻阿富汗美军司令约翰·艾伦以及美国人工智能 阿米尔·侯赛因的文章《下一场太空竞赛目标是人工智能》称,虽然美国历史上是人工智能领域大部分最重要的创新和研究机构的所在地,但国际竞争对手正紧随其后。
人工智能成必争之地
文章称,约60年前,时任美国参议院多数党 林登·约翰逊预测说,谁赢得太空竞赛,谁就将“控制、彻底控制地球”。美国最终赢得了那场竞赛,不仅登上了月球,而且还激发了下一代的科学家、技术人员和乐观主义者。
最近,俄罗斯总统弗拉基米尔·普京在预测下一场伟大的科技竞赛——人工智能时,重复了约翰逊的这种表述。
文章认为,约翰逊和普京对技术力量的理解中,存在一条跨越时代和地缘政治的真理。不过,现在美国担心的是,它正面临在这场关键竞赛中落后的风险。
文章称,很快,在包括工作和娱乐在内的大多数社会经济领域,人工智能将成为给我们带来竞争优势的最具潜力的改变者,其影响将远远超过人们通常有关自动化取代制造业工作岗位的辩论。
文章认为,虽然美国是人工智能的诞生地,也是历史上这一领域大部分最重要的创新和研究机构的所在地,但国际竞争对手正紧随其后。
文章称,中国最近宣布了一项斥资数十亿美元的人工智能发展计划,到2030年要在这一技术领域 。俄罗斯正在开发具有人工智能的下一代米格-41战机,能够在高达6马赫的极超音速下控制战机。
美国或被中俄赶超
文章称,美国用肉眼就能看到自己的弱点:高层 计划中人工智能项目的缺乏、科技经费缩减、限制移民等,这一切都在损害其竞争力。问题在于,美国能否在为时已晚之前纠正错误。
文章对美国所面临的问题,以及应该采取什么样的措施,进行了大量思考:
首先,鼓励美国研究人员引领 创新的开放性,同样也在促使他们的研究成果在得到保护前迅速地进入公众视野。虽然美国珍视学术开放文化,但美国企业需要更快的 程序和政府支持,这样在与海外侵权者发生知识产权纠纷时,它们才能拥有一些优势。
其次,监管部门使得在美国生产商品并销往别国变得非常困难,从而为外国竞争者创造了一个他们本来毫无机会的市场。多年来,美国一直禁止出口加密技术和基础处理器。这种做法所带来的仅仅是国际竞争者满足了需求,为它们自己创造出了一个市场。
第三,中国在深度学习方面发表的论文数超过了美国,超级计算机数量也超过了美国。美国需要在人工智能方面进行更多的公共投资。
第四,中国正吸引更好的人工智能人才,收购美国技术公司。解决办法很简单:为这一领域的 提供更多绿卡;为公立大学的研究实验室提供更多的联邦资助;向罗兹奖学金这样的教育项目提供更多投资,以吸引未来的博士。
文章称,美国永远不能忘记,人工智能代表了人类创造能力的一个突破。人工智能是人类下一个伟大的跃进。最先登上月球的 现在必须正确地迈出走向明天的那一步。
好了,今天关于人工智能可以用来炒股吗就到这里了。希望大家对人工智能可以用来炒股吗有更深入的了解,同时也希望这个话题人工智能可以用来炒股吗的解答可以帮助到大家。